Time Splitting for Wave Equations in Random Media

نویسنده

  • GUILLAUME BAL
چکیده

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the simplified regime of the parabolic wave equation in a random medium. The mathematical theory of the convergence and statistical properties of the algorithm is based on the analysis of the Wigner transforms in random media. Our results provide a step toward understanding time and space discretizations that are needed in order for the numerical algorithm to capture the correct macroscopic statistics of the wave energy density in a random medium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

Wave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)

A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.

متن کامل

Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media

Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...

متن کامل

Plane Wave Propagation Through a Planer Slab

An approximation technique is considered for computing transmission and reflection coefficients for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003